高一數學誘導公式一到六
公式一:
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:
設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與-α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
上面這些誘導公式可以概括為:
對于π/2*k±α(k∈Z)的三角函數值,
①當k是偶數時,得到α的同名函數值,即函數名不改變;
②當k是奇數時,得到α相應的余函數值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇變偶不變)
然后在前面加上把α看成銳角時原函數值的符號。(符號看象限)
上述的記憶口訣是:
奇變偶不變,符號看象限。
公式右邊的符號為把α視為銳角時,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函數值的符號可記憶
水平誘導名不變;符號看象限。
各種三角函數在四個象限的符號如何判斷,也可以記住口訣
“一全正;二正弦(余割);三兩切;四余弦(正割)”
同角三角函數的基本關系式
倒數關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數關系六角形記憶法
六角形記憶法:
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數關系:對角線上兩個函數互為倒數;
(2)商數關系:六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。
(主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關系式。
(3)平方關系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。
兩角和差公式:
兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式:
二倍角的正弦、余弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/[1-tan^2(α)]
半角公式
半角的正弦、余弦和正切公式(降冪擴角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
三倍角公式:
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
和差化積公式:
三角函數的和差化積公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
積化和差公式
三角函數的積化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
誘導公式是什么概念。怎樣區分它的正負號
誘導公式是指三角函數中將角度比較大的三角函數利用角的周期性,轉換為角度比較小的三角函數的公式。誘導公式有六組共54個。
關于tan的誘導公式
tan的誘導公式是tanα±tanβ=sin(α±β)/(cosα·cosβ),在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的對邊c,BC是∠A的對邊a,AC是∠B的對邊b,正切函數就是tanB=b/a,即tanB=AC/BC。
三角函數是數學中屬于初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但并不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
cot與tan的誘導公式
tan函數和cot函數誘導公式為cot(90°-A)tanA、tan(90°-A)=cotA、cot(π/2+α)=-tanα、cot(π/2-α)=tanα。
誘導公式是指三角函數中,利用周期性將角度比較大的三角函數,轉換為角度比較小的三角函數的公式;而且誘導函數終邊相同的角的同一三角函數的值相等。
4個誘導公式是什么
誘導公式是指三角函數中將角度比較大的三角函數利用角的周期性,轉換為角度比較小的三角函數的公式。
誘導公式有六組共54個。公式一到公式五函數名未改變,公式六函數名發生改變。公式一到公式五可簡記為:函數名不變,符號看象限。即α+k·360°(k∈Z)、﹣α、180°±α、360°-α的三角函數值,等于α的同名三角函數值,前面加上一個把α看成銳角時原函數值的符號。
上面這些誘導公式可以概括為:對于kπ/2±α(k∈Z)的三角函數值,當k是偶數時,得到α的同名函數值,即函數名不改變;當k是奇數時,得到α相應的余函數值,即sin→cos;cos→sin;tan→cot;cot→tan(奇變偶不變)然后在前面加上把α看成銳角時原函數值的符號。
為什么那些誘導公式叫做“誘導公式"
所謂“誘導公式”,就是通過這些起中間作用的公式把原來相對比較復雜,不利于計算的計算式化簡成比較容易的,相對好解的式子,從而完成計算要求,這些公式在這個過程中起到“誘導”的作用,“誘導公式”的名字就由此而來。
主要的誘導公式有以下這些:
sin(π-α)=sinα
cos(π-α)=-cosα
……
sin(-α)=cosα
cos(-α)=-sinα
……
sin(2π-α)=-sinα
cos(2π-α)=cosα



